Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Niger J Physiol Sci ; 37(1): 1-7, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35947841

RESUMO

Maternal lifestyle has been implicated as a predisposing factor in the development of metabolic disorders in adulthood. This lifestyle includes the immediate environment, physical activity and nutrition. Maternal nutrition has direct influence on the developmental programming through biochemical alterations and can lead to modifications in the fetal genome through epigenetic mechanisms. Imbalance in basic micro or macro nutrients due to famine or food deficiency during delicate gestational periods can lead to onset of metabolic syndrome including obesity. A major example is the Dutch famine which led to a serious metabolic disorder in adulthood of affected infants. Notably due to gene variants, individualized responses to nutritional deficiencies are unconventional, therefore intensifying the need to study nutritional genomics during fetal programming. Epigenetic mechanisms can cause hereditary changes without changing the DNA sequence; the major mechanisms include small non-coding RNAs, histone modifications and most stable of all is DNA methylation. The significance association between obesity and DNA methylation is through regulation of genes implicated in lipid and glucose metabolism either directly or indirectly by hypomethylation or hypermethylation. Examples include CPT1A, APOA2, ADRB3 and POMC. Any maternal exposure to malnutrition or overnutrition that can affect genes regulating major metabolic pathways in the fetus, will eventually cause underlying changes that can predispose or cause the onset of metabolic disorder in adulthood. In this review, we examined the interaction between nutrition during gestation and epigenetic programming of metabolic syndrome.


Assuntos
Doenças Metabólicas , Síndrome Metabólica , Efeitos Tardios da Exposição Pré-Natal , Adulto , Causalidade , Epigênese Genética/genética , Feminino , Desenvolvimento Fetal/genética , Humanos , Lactente , Fenômenos Fisiológicos da Nutrição Materna/genética , Síndrome Metabólica/genética , Obesidade/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo
2.
Nutrients ; 13(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34836113

RESUMO

Iron deficiency (ID) anemia is the foremost micronutrient deficiency worldwide, affecting around 40% of pregnant women and young children. ID during the prenatal and early postnatal periods has a pronounced effect on neurodevelopment, resulting in long-term effects such as cognitive impairment and increased risk for neuropsychiatric disorders. Treatment of ID has been complicated as it does not always resolve the long-lasting neurodevelopmental deficits. In animal models, developmental ID results in abnormal hippocampal structure and function associated with dysregulation of genes involved in neurotransmission and synaptic plasticity. Dysregulation of these genes is a likely proximate cause of the life-long deficits that follow developmental ID. However, a direct functional link between iron and gene dysregulation has yet to be elucidated. Iron-dependent epigenetic modifications are one mechanism by which ID could alter gene expression across the lifespan. The jumonji and AT-rich interaction domain-containing (JARID) protein and the Ten-Eleven Translocation (TET) proteins are two families of iron-dependent epigenetic modifiers that play critical roles during neural development by establishing proper gene regulation during critical periods of brain development. Therefore, JARIDs and TETs can contribute to the iron-mediated epigenetic mechanisms by which early-life ID directly causes stable changes in gene regulation across the life span.


Assuntos
Anemia Ferropriva/genética , Epigênese Genética/fisiologia , Hipocampo/metabolismo , Fenômenos Fisiológicos da Nutrição do Lactente/genética , Fenômenos Fisiológicos da Nutrição Materna/genética , Anemia Ferropriva/complicações , Animais , Animais Recém-Nascidos , Desenvolvimento Infantil/fisiologia , Epigenômica , Feminino , Hipocampo/crescimento & desenvolvimento , Humanos , Lactente , Recém-Nascido , Transtornos do Neurodesenvolvimento/genética , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Transmissão Sináptica/fisiologia
3.
Clin Nutr ; 40(10): 5339-5345, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34543890

RESUMO

BACKGROUND: Variability in the FADS2 gene, which codifies the Delta-6 Desaturases and modulates the conversion of essential n-3 and n-6 fatty acids into long-chain polyunsaturated fatty acids, might modify the impact of prenatal supplementation with n-3 docosahexaenoic acid (DHA) on neurodevelopment. OBJECTIVE: To assess if maternal FADS2 single nucleotide polymorphisms (SNPs) modified the effect of prenatal DHA on offspring development at 5 years. DESIGN: We conducted a post-hoc interaction analysis of the POSGRAD randomized controlled trial (NCT00646360) of prenatal supplementation with algal-DHA where 1094 pregnant women originally randomized to 400 mg/day of preformed algal DHA or a placebo from gestation week 18-22 through delivery. In this analysis, we included offspring with information on maternal genotype and neurodevelopment at 5 years (DHA = 316; Control = 306) and used generalized linear models to assess interactions between FADS2 SNPs rs174602 or rs174575 and prenatal DHA on neurodevelopment at 5 years measured with McCarthy Scales of Children's Abilities (MSCA). RESULTS: Maternal and offspring characteristics were similar between groups. At baseline, mean (±standard deviation) maternal age was 26 ± 5 years and schooling was 12 ± 4 years. Forty-six percent (46%) of the children were female. Maternal minor allele frequencies were 0.37 and 0.33 for SNPs rs174602 and rs174575, respectively. There were significant variations by SNP rs174602 and intervention group (p for interactions <0.05) where children in the intervention group had higher MSCA scores on the quantitative (DHA: mean ± SEM = 22.6 ± 0.9 vs. Control = 19.1 ± 0.9, mean difference (Δ) = 3.45; p = 0.01) and memory (DHA = 27.9 ± 1.1 vs. Control = 23.7 ± 1.1, Δ = 4.26; p = 0.02) scales only among offspring of TT (minor allele homozygotes). CONCLUSIONS: Maternal FADS2 SNP rs174602 modified the effect of prenatal DHA on cognitive development at 5 years. Variations in the genetic make-up of target populations could be an important factor to consider for prenatal DHA supplementation interventions.


Assuntos
Desenvolvimento Infantil/efeitos dos fármacos , Cognição/efeitos dos fármacos , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Graxos Dessaturases/genética , Fenômenos Fisiológicos da Nutrição Materna/genética , Polimorfismo de Nucleotídeo Único , Adulto , Pré-Escolar , Feminino , Seguimentos , Humanos , Masculino , Cuidado Pré-Natal , Adulto Jovem
4.
Nutrients ; 13(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34444927

RESUMO

The rise in prevalence of obesity in women of reproductive age in developed and developing countries might propagate intergenerational cycles of detrimental effects on metabolic health. Placental lipid metabolism is disrupted by maternal obesity, which possibly affects the life-long health of the offspring. Here, we investigated placental lipid metabolism in women with pre-gestational obesity as a sole pregnancy complication and compared it to placental responses of lean women. Open profile and targeted lipidomics were used to assess placental lipids and oxidised products of docosahexaenoic (DHA) and arachidonic acid (AA), respectively, neuroprostanes and isoprostanes. Despite no overall signs of lipid accumulation, DHA and AA levels in placentas from obese women were, respectively, 2.2 and 2.5 times higher than those from lean women. Additionally, a 2-fold increase in DHA-derived neuroprostanes and a 1.7-fold increase in AA-derived isoprostanes were seen in the obese group. These changes correlated with a 70% decrease in placental FABP1 protein. Multivariate analyses suggested that neuroprostanes and isoprostanes are associated with maternal and placental inflammation and with birth weight. These results might shed light on the molecular mechanisms associated with altered placental fatty acid metabolism in maternal pre-gestational obesity, placing these oxidised fatty acids as novel mediators of placental function.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Isoprostanos/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/genética , Neuroprostanos/metabolismo , Obesidade Materna/metabolismo , Adulto , Peso ao Nascer , Feminino , Humanos , Inflamação , Metabolismo dos Lipídeos , Placenta/metabolismo , Gravidez
5.
Nutrients ; 13(8)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34445045

RESUMO

In recent years, strong evidence has emerged that exposure to a maternal high-fat diet (HFD) provokes changes in the structure, function, and development of the offspring's brain and may induce several neurodevelopmental and psychiatric illnesses. The aims of this study were to evaluate the effects of a maternal HFD during pregnancy and lactation on depressive-like behavior and Cnr1 gene expression (encoding the CB1 receptor) in brain structures of rat offspring and to investigate the epigenetic mechanism involved in this gene expression. We found that a maternal HFD during pregnancy and lactation induced a depressive-like phenotype at postnatal days (PNDs) 28 and 63. We found that a maternal HFD decreased the Cnr1 mRNA levels in the prefrontal cortex with the increased levels of miR-212-5p and methylation of CpG islands at the Cnr1 promoter and reduced the level of Cnr1 gene expression in the dorsal striatum with an increased level of miR-154-3p in adolescent male offspring. A contrasting effect of a maternal HFD was observed in the hippocampus, where upregulation of Cnr1 gene expression was accompanied by a decrease of miR-154-3p (at PNDs 28 and 63) and miR-212-5p (at PND 63) expression and methylation of CpG islands at the Cnr1 promoter in male offspring. In summary, we showed that a maternal HFD during pregnancy and lactation triggered several epigenetic mechanisms in the brains of rat offspring, which may be related to long-lasting alterations in the next generation and produce behavioral changes in offspring, including a depressive-like phenotype.


Assuntos
Depressão/genética , Dieta Hiperlipídica/efeitos adversos , Fenômenos Fisiológicos da Nutrição Materna/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Receptor CB1 de Canabinoide/metabolismo , Animais , Comportamento Animal , Encéfalo/metabolismo , Epigênese Genética , Feminino , Expressão Gênica , Lactação/genética , Masculino , Gravidez , Ratos
6.
Nutrients ; 13(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34371833

RESUMO

Among the human milk oligosaccharides (HMOS), the galactosyllactoses (GLs) are only limitedly studied. This study aims to describe the presence and relative levels of HMOS, including GLs, in human milk (HM) according to maternal Secretor and Lewis (SeLe) phenotype and lactation stage. Relative levels of 19 HMOS were measured in 715 HM samples collected in the first 4 months postpartum from 371 donors participating in the PreventCD study. From a subset of 24 Dutch women (171 HM samples), samples were collected monthly up to 12 months postpartum and were additionally analyzed for relative and absolute levels of ß6'-GL, ß3'-GL and α3'-GL. Maternal SeLe phenotype or HM group was assigned based on the presence of specific fucosylated HMOS. Most HMOS, including ß6'- and ß3'-GL, were present in the vast majority (≥75%) of HM samples, whereas others (e.g., LNDFH II, 2'-F-LNH and α3'-GL) only occurred in a low number (<25%) of samples. Clear differences were observed between the presence and relative levels of the HMOS according to the maternal phenotype and lactation stage. Absolute concentrations of ß6'-GL and ß3'-GL were higher in HM group IV samples compared to samples of the other three HM groups. ß3'-GL was also higher in HM group II samples compared to HM group I samples. ß3'-GL and ß6'-GL were stable over lactation stages. In conclusion, presence and levels of HMOS vary according to HM group and lactation stage. Not all HMOS behave similarly: some HMOS depend strongly on maternal phenotype and/or lactation stage, whereas others do not. ß3'-GL and ß6'-GL were present in low concentrations in over 75% of the analyzed HM samples and showed differences between HM groups, but not between the lactation stages.


Assuntos
Lactação/fisiologia , Fenômenos Fisiológicos da Nutrição Materna/genética , Leite Humano/química , Oligossacarídeos/análise , Trissacarídeos/análise , Adulto , Feminino , Humanos , Fenótipo , Período Pós-Parto
7.
Nutrients ; 13(3)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802362

RESUMO

Identification of causal factors that influence fetal growth and anthropometry at birth is of great importance as they provide information about increased risk of disease throughout life. The association between maternal genetic polymorphism MTHFR(677)C>T and anthropometry at birth has been widely studied because of its key role in the one-carbon cycle. MTHFR(677) CT and TT genotypes have been associated with a greater risk of low birth weight, especially in case of deficient intake of folic acid during pregnancy. This study aimed to analyze the association between the maternal MTHFR(677)C>T genetic polymorphism and anthropometry at birth in a population with adequate folate consumption. We included 694 mother-newborn pairs from a prospective population-based birth cohort in Spain, in the Genetics, Early life enviroNmental Exposures and Infant Development in Andalusia (GENEIDA) project. Women were genotyped for MTHFR(677)C>T SNP by Q-PCR using TaqMan© probes. Relevant maternal and newborn information was obtained from structured questionnaires and medical records. Results showed that maternal MTHFR(677)C>T genotype was associated with newborn anthropometry. Genotypes CT or CT/TT showed statistically significant associations with increased or decreased risk of large-for-gestational-age (LGA) or small-for-gestational-age (SGA) based on weight and height, depending on the newborn's sex, as well as with SGA in premature neonates. The relationships between this maternal genotype and anthropometry at birth remained despite an adequate maternal folate intake.


Assuntos
Peso ao Nascer/genética , Ingestão de Alimentos/genética , Fenômenos Fisiológicos da Nutrição Materna/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo Genético , Adulto , Antropometria , Feminino , Desenvolvimento Fetal/genética , Ácido Fólico/sangue , Genótipo , Humanos , Recém-Nascido , Recém-Nascido Pequeno para a Idade Gestacional , Masculino , Estudos Prospectivos , Espanha
8.
Int J Mol Sci ; 22(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799409

RESUMO

Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is essential for fetal growth and development. We aimed to investigate the effect of maternal and postnatal high LA (HLA) diet on plasma FA composition, plasma and hepatic lipids and genes involved in lipid metabolism in the liver of adult offspring. Female rats were fed with low LA (LLA; 1.44% LA) or HLA (6.21% LA) diets for 10 weeks before pregnancy, and during gestation/lactation. Offspring were weaned at postnatal day 25 (PN25), fed either LLA or HLA diets and sacrificed at PN180. Postnatal HLA diet decreased circulating total n-3 PUFA and alpha-linolenic acid (ALA), while increased total n-6 PUFA, LA and arachidonic acid (AA) in both male and female offspring. Maternal HLA diet increased circulating leptin in female offspring, but not in males. Maternal HLA diet decreased circulating adiponectin in males. Postnatal HLA diet significantly decreased aspartate transaminase (AST) in females and downregulated total cholesterol, HDL-cholesterol and triglycerides in the plasma of males. Maternal HLA diet downregulated the hepatic mRNA expression of Hmgcr in both male and female offspring and decreased the hepatic mRNA expression of Cpt1a and Acox1 in females. Both maternal and postnatal HLA diet decreased hepatic mRNA expression of Cyp27a1 in females. Postnatal diet significantly altered circulating fatty acid concentrations, with sex-specific differences in genes that control lipid metabolism in the adult offspring following exposure to high LA diet in utero.


Assuntos
Ácidos Graxos Ômega-6/metabolismo , Leptina/genética , Ácido Linoleico/metabolismo , Fígado/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-6/farmacologia , Feminino , Humanos , Lactação/efeitos dos fármacos , Lactação/genética , Leptina/metabolismo , Ácido Linoleico/farmacologia , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Masculino , Fenômenos Fisiológicos da Nutrição Materna/genética , Gravidez , Ratos , Caracteres Sexuais , Triglicerídeos/sangue
9.
Nutrients ; 13(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572874

RESUMO

Vitamin D receptor (VDR) polymorphisms have been associated with a plethora of adverse pregnancy and offspring outcomes. The aim of this study was to evaluate the combined effect of maternal and neonatal VDR polymorphisms (ApaI, TaqI, BsmI, FokI, Tru9I) and different maternal and neonatal 25(OH)D cut-offs on neonatal birth anthropometry. This cross-sectional study included data and samples from a cohort of mother-child pairs at birth. A detailed neonatal anthropometry analysis at birth was also conducted. Different 25(OH)D cut-offs for neonates and mothers were included, according to their vitamin D status at birth: for neonates, cut-offs of [25(OH)D ≤ 25 and > 25 nmol/L] and [25(OH)D ≤ 50 nmol/L] were adopted, whereas for mothers, a 25(OH)D cut-off of [25(OH)D ≤ 50 and > 50 nmol/L)] was investigated. Following this classification, maternal and neonatal VDR polymorphisms were evaluated to investigate the potential different effects of different neonatal and maternal 25(OH)D cut-offs on neonatal birth anthropometry. A total of 69 maternal-neonatal dyads were included in final analysis. Weight, neck rump length, chest circumference, abdominal circumference, abdominal circumference (iliac), high thigh circumference, middle thigh circumference, lower arm radial circumference, and lower leg calf circumference of neonates who had the TAQl SNP TT genotype and maternal 25(OH)D < 50 nmol/L were significantly higher than that of neonates who had the Tt or tt genotypes (p = 0.001, Hg = 1.341, p = 0.036, Hg = 0.976, p = 0.004, Hg = 1.381, p = 0.001, Hg = 1.554, p = 0.001, Hg = 1.351, p = 0.028, Hg = 0.918, p = 0.008, Hg = 1.090, p = 0.002, Hg = 1.217, and p = 0.020, Hg = 1.263, respectively). Skin fold high anterior was significantly lower in neonates who had the BSMI SNP BB genotype compared to that of neonates with Bb or bb genotypes (p = 0.041, Hg = 0.950), whereas neck rump length was significantly higher in neonates who had the FOKI SNP FF genotype compared to that of neonates who had Ff or ff genotypes (p = 0.042, Hg = 1.228). Regarding neonatal VDR polymorphisms and cut-offs, the abdominal circumference (cm) of neonates who had the TAQI SNP TT genotype and 25(OH)D < 25 nmol/L were significantly higher than that of neonates who had the Tt or tt genotypes (p = 0.038, Hg = 1.138). In conclusion, these results indicate that the maternal TAQI VDR polymorphism significantly affected neonatal birth anthropometry when maternal 25(OH) concentrations were <50 nmol/L, but not for a higher cut-off of >50 nmol/L, whereas this effect is minimally evident in the presence of neonatal TAQI polymorphism with neonatal 25(OH)D values <25 nmol/L. The implication of these findings could be incorporated in daily clinical practice by targeting a maternal 25(OH)D cut-off >50 nmol/L, which could be protective against any effect of genetic VDR variance polymorphism on birth anthropometry.


Assuntos
Fenômenos Fisiológicos da Nutrição Materna/genética , Estado Nutricional/genética , Polimorfismo Genético/genética , Receptores de Calcitriol/genética , Vitamina D/análogos & derivados , Adulto , Antropometria , Estudos de Coortes , Estudos Transversais , Feminino , Genótipo , Humanos , Recém-Nascido , Masculino , Fenótipo , Gravidez , Valores de Referência , Vitamina D/sangue
10.
Am J Physiol Endocrinol Metab ; 320(4): E786-E796, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33586490

RESUMO

We investigated the expression levels of nephroblastoma overexpressed [NOV or CCN3 (cellular communication network factor 3)] in the serum and placenta of pregnant women and of pregnant mice fed a high-fat diet (HFD), and its effect on placental glucose transporter 3 (GLUT3) expression, to examine its role in gestational diabetes mellitus (GDM). NOV/CCN3 expression was increased in the mouse serum during pregnancy. At gestational day 18, NOV/CCN3 protein expression was increased in the serum and placenta of the HFD mice compared with that of mice fed a normal diet. Compared with non-GDM patients, the patients with GDM had significantly increased serum NOV/CCN3 protein expression and placental NOV/CCN3 mRNA expression. Therefore, we hypothesized that NOV/CCN3 signaling may be involved in the pathogenesis of GDM. We administered NOV/CCN3 recombinant protein via intraperitoneal injections to pregnant mice fed HFD or normal diet. NOV/CCN3 overexpression led to glucose intolerance. Combined with the HFD, NOV/CCN3 exacerbated glucose intolerance and caused insulin resistance. NOV/CCN3 upregulates GLUT3 expression and affects the mammalian target of rapamycin (mTOR) pathway in the GDM environment in vivo and in vitro. In summary, our results demonstrate, for the first time, the molecular mechanism of NOV/CCN3 signaling in maternal metabolism to regulate glucose balance during pregnancy. NOV/CCN3 may be a potential target for detecting and treating GDM.NEW & NOTEWORTHY NOV/CCN3 regulates glucose homeostasis in mice during pregnancy. NOV/CCN3 upregulates GLUT3 expression and affects the mTOR pathway in the GDM environment in vivo and in vitro.


Assuntos
Dieta Hiperlipídica , Transportador de Glucose Tipo 3/genética , Proteína Sobre-Expressa em Nefroblastoma/genética , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Gorduras na Dieta/farmacologia , Feminino , Glucose/metabolismo , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Humanos , Fenômenos Fisiológicos da Nutrição Materna/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Materna/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Gravidez , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
11.
Am J Physiol Endocrinol Metab ; 320(3): E438-E452, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427054

RESUMO

Obesity is a prevailing problem across the globe. Women who are obese have difficulty initiating and sustaining lactation. However, the impact of genetics and diet on breastfeeding outcomes is understudied. Here we explore the effect of diet and genotype on lactation. We utilized the low-density lipoprotein receptor (Ldlr-KO) transgenic mouse model as an obesity and hypercholesterolemia model. Additionally, we used the tryptophan hydroxylase 1 (Tph1-KO) mouse, recently identified as a potential anti-obesogenic model, to investigate if addition of Tph1-KO could ameliorate negative effects of obesity in Ldlr-KO mice. We created a novel transgenic mouse line by combining the Ldlr and Tph1 [double knockout (DKO)] mice to study the interaction between the two genotypes. Female mice were fed a low-fat diet (LFD; 10% fat) or high-fat diet (HFD; 60% fat) from 3 wk of age through early [lactation day 3 (L3)] or peak lactation [lactation day 11 (L11)]. After 4 wk of consuming either LFD or HFD, female mice were bred. On L2 and L10, dams were milked to investigate the effect of diet and genotype on milk composition. Dams were euthanized on L3 or L11. There was no impact of diet or genotype on milk protein or triglycerides (TGs) on L2; however, by L10, Ldlr-KO and DKO dams had increased TG levels in milk. RNA-sequencing of L11 mammary glands demonstrated Ldlr-KO dams fed HFD displayed enrichment of genes involved in immune system pathways. Interestingly, the DKO may alter vesicle budding and biogenesis during lactation. We also quantified macrophages by immunostaining for F4/80+ cells at L3 and L11. Diet played a significant role on L3 (P = 0.013), but genotype played a role at L11 (P < 0.0001) on numbers of F4/80+ cells. Thus the impact of diet and genotype on lactation differs depending on stage of lactation, illustrating complexities of understanding the intersection of these parameters.NEW & NOTEWORTHY We have created a novel mouse model that is focused on understanding the intersection of diet and genotype on mammary gland function during lactation.


Assuntos
Dieta Hiperlipídica , Lactação , Glândulas Mamárias Animais/metabolismo , Receptores de LDL/genética , Triptofano Hidroxilase/genética , Animais , Gorduras na Dieta/farmacologia , Feminino , Interação Gene-Ambiente , Genótipo , Lactação/efeitos dos fármacos , Lactação/genética , Glândulas Mamárias Animais/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Materna/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Materna/genética , Camundongos , Camundongos Knockout , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo
12.
Nutrients ; 14(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35011003

RESUMO

Folate and choline are interconnected metabolically. The MTHFD1 R653Q SNP is a risk factor for birth defects and there are concerns that choline deficiency may interact with this SNP and exacerbate health risks. 80-90% of women do not meet the Adequate Intake (AI) for choline. The objective of this study was to assess the effects of choline deficiency on maternal one-carbon metabolism and reproductive outcomes in the MTHFD1-synthetase deficient mouse (Mthfd1S), a model for MTHFD1 R653Q. Mthfd1S+/+ and Mthfd1S+/- females were fed control (CD) or choline-deficient diets (ChDD; 1/3 the amount of choline) before mating and during pregnancy. Embryos were evaluated for delays and defects at 10.5 days gestation. Choline metabolites were measured in the maternal liver, and total folate measured in maternal plasma and liver. ChDD significantly decreased choline, betaine, phosphocholine, and dimethylglycine in maternal liver (p < 0.05, ANOVA), and altered phosphatidylcholine metabolism. Maternal and embryonic genotype, and diet-genotype interactions had significant effects on defect incidence. Mild choline deficiency and Mthfd1S+/- genotype alter maternal one-carbon metabolism and increase incidence of developmental defects. Further study is required to determine if low choline intakes contribute to developmental defects in humans, particularly in 653QQ women.


Assuntos
Aminoidrolases/genética , Deficiência de Colina/genética , Deficiências do Desenvolvimento/genética , Formiato-Tetra-Hidrofolato Ligase/deficiência , Formiato-Tetra-Hidrofolato Ligase/genética , Fenômenos Fisiológicos da Nutrição Materna/genética , Meteniltetra-Hidrofolato Cicloidrolase/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Complexos Multienzimáticos/genética , Enzimas Multifuncionais/deficiência , Animais , Colina/análise , Deficiências do Desenvolvimento/epidemiologia , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Feminino , Ácido Fólico/metabolismo , Genótipo , Incidência , Fígado/metabolismo , Camundongos , Polimorfismo de Nucleotídeo Único , Gravidez
13.
Cell Mol Life Sci ; 78(4): 1729-1744, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32734584

RESUMO

Maternal nutrition is crucial for the offspring's skeleton development and the onset of osteoporosis later in life. While maternal low protein diet has been shown to regulate bone mass negatively, the effect of a high protein diet (HP) remains unexplored. Here, we found that C57BL/6 mice fed with HP delivered offspring with decreased skeletal mineralization at birth and reduced bone mass throughout their life due to a decline in their osteoblast maturation. A small RNA sequencing study revealed that miR-24-1-5p was highly upregulated in HP group osteoblasts. Target prediction and validation studies identified SMAD-5 as a direct target of miR-24-1-5p. Furthermore, mimic and inhibitor studies showed a negative correlation between miR-24-1-5p expression and osteoblast function. Moreover, ex vivo inhibition of miR-24-1-5p reversed the reduced maturation and SMAD-5 expression in the HP group osteoblasts. Together, we show that maternal HP diminishes the bone mass of the offspring through miR-24-1-5p.


Assuntos
Desenvolvimento Ósseo/genética , Fenômenos Fisiológicos da Nutrição Materna/genética , MicroRNAs/genética , Proteína Smad5/genética , Animais , Densidade Óssea , Osso e Ossos/metabolismo , Diferenciação Celular/genética , Dieta Rica em Proteínas/efeitos adversos , Feminino , Humanos , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Camundongos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteoporose/genética , Osteoporose/patologia
14.
Dokl Biol Sci ; 494(1): 244-247, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33083882

RESUMO

In the present study it has been shown for the first time that maternal methyl-enriched diet (choline, betaine, folic acid, vitamin B12, L-methionine, zinc) during perinatal period reduces the expression of genetic absence epilepsy and comorbid depression in adult offspring of WAG/Rij rats. This beneficial effect was more pronounced in males compared with females. It is assumed that epigenetic modifications induced by maternal methyl-enriched diet in the offspring at the early stages of ontogenesis might be a possible mechanism underlying the correction of genetically-based pathologic phenotype in WAG/Rij rats. Results suggest that methyl-enriched diet during perinatal period can be potentially used for mitigation or prevention epileptogenesis and depression-like comorbid disorders in people genetically predisposed to absence epilepsy.


Assuntos
Depressão/genética , Epilepsia Tipo Ausência/genética , Fenômenos Fisiológicos da Nutrição Materna/genética , Caracteres Sexuais , Animais , Depressão/dietoterapia , Depressão/patologia , Modelos Animais de Doenças , Epigênese Genética/genética , Epilepsia Tipo Ausência/dietoterapia , Epilepsia Tipo Ausência/patologia , Feminino , Humanos , Masculino , Gravidez , Ratos
15.
Nutrients ; 12(6)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512764

RESUMO

Small-for-gestational-age (SGA) is associated with significant perinatal morbidity and mortality. Our aim was to investigate gene-nutrient interactions between maternal one-carbon single nucleotide polymorphisms (SNPs) and folic acid supplement (FAS) use, and their association with SGA. Nulliparous New Zealand women with singleton pregnancy were recruited as part of the Screening for Pregnancy Endpoints prospective cohort study. Data on FAS use was collected via face-to-face interview at 15 weeks' gestation; participants were followed prospectively and birth outcome data collected within 72 h of delivery. Participants were genotyped for MTHFR 677, MTHFR 1298, MTHFD1 1958, MTR 2756, MTRR 66 and TCN2 776 SNPs. Genotype data for at least one SNP was available for 1873 (93%) of eligible participants. Analysis showed a significant SNP-FAS interaction for MTHFR 1298 (p = 0.020), MTHFR 677 (p = 0.019) and TCN2 776 (p = 0.017) in relation to SGA: MTHFR 1298 CC variant non-FAS users had an increased likelihood [Odds Ratio (OR) = 2.91 (95% Confidence Interval (CI) = 1.52, 5.60] compared with wild-type (MTHFR 1298 AA) FAS users. MTHFR 677 variant allele carrier (MTHFR 677 CT + MTHFR 677 TT) non-FAS users had an increased likelihood [OR = 1.87 (95% CI = 1.21, 2.88)] compared to wild-type (MTHFR 677 CC) FAS users. TCN2 776 variant (TCN2 776 GG) non-FAS users had an increased likelihood [OR = 2.16 (95% CI = 1.26, 3.71)] compared with wild type homozygote + heterozygote (TCN2 776 CC + TCN2 776 CG) FAS users. No significant interactions were observed for MTHFD1 1958, MTR 2756 or MTRR 66 (p > 0.05). We observed an overall pattern of FAS attenuating differences in the likelihood of SGA seen between genotype groups in FAS non-users. Future research should focus on how intake of other one-carbon nutrients might mediate these gene-nutrient interactions.


Assuntos
Suplementos Nutricionais , Desenvolvimento Fetal/genética , Desenvolvimento Fetal/fisiologia , Ácido Fólico/administração & dosagem , Genótipo , Recém-Nascido Pequeno para a Idade Gestacional , Fenômenos Fisiológicos da Nutrição Materna/genética , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Nutrigenômica , Polimorfismo de Nucleotídeo Único , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Adulto , Feminino , Ferredoxina-NADP Redutase/genética , Humanos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Antígenos de Histocompatibilidade Menor/genética , Nova Zelândia , Gravidez , Estudos Prospectivos , Adulto Jovem
16.
Aging (Albany NY) ; 12(12): 12206-12221, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32554859

RESUMO

Prenatal malnutrition could promote renal dysfunction in adulthood, but it is unclear whether the detrimental effect could be transmitted to the next generation. We investigated whether famine exposure was associated with variation of estimated glomerular filtration rate(eGFR) in two generations and explored the mediation role of methylation alterations. The longitudinal analysis included 2909 participants from Suihua rural area. F1 and F2 generations were divided into non-famine and famine group based on their birth year and exposure status of their parents, respectively. The eGFR was calculated by using the chronic kidney disease epidemiology collaboration equation. We applied mixed-effect models to investigate the association between famine and ΔeGFR and tested blood DNA methylomes in 46 families across two generations. The mediation-analysis models were utilized to examine the mediation effect of methylation alterations on the famine-ΔeGFR association.In mixed-effect models, famine exposure was associated with declined ΔeGFR level in F1(ß:-8.32;95%CI:-11.51,-5.12) and in F2(ß:-6.11;95%CI:-11.88, -0.43). Methylation850K BeadChip data showed only 19 of 961 F1 differentially methylated sites showed concordant alterations in F2. The mediation-analysis results showed methylation alterations on AGTR1 and PRKCA might mediate the famine-ΔeGFR association. Overall, prenatal famine exposure may have long-term effects on eGFR decline across consecutive generations which might be partly mediated by methylation alterations on AGTR1 and PRKCA.


Assuntos
Epigênese Genética , Fome Epidêmica , Taxa de Filtração Glomerular/genética , Desnutrição/complicações , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Insuficiência Renal Crônica/epidemiologia , China/epidemiologia , Metilação de DNA , Epigenômica , Feminino , Seguimentos , Humanos , Masculino , Fenômenos Fisiológicos da Nutrição Materna/genética , Pessoa de Meia-Idade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Proteína Quinase C-alfa/genética , Receptor Tipo 1 de Angiotensina/genética , Insuficiência Renal Crônica/etiologia , Fatores de Risco
17.
Nutrients ; 12(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438566

RESUMO

Fetal brain development is closely dependent on maternal nutrition and metabolic status. Maternal protein restriction (PR) is known to be associated with alterations in the structure and function of the hypothalamus, leading to impaired control of energy homeostasis and food intake. The objective of this study was to identify the cellular and molecular systems underlying these effects during fetal development. We combined a global transcriptomic analysis on the fetal hypothalamus from a rat model of maternal PR with in vitro neurosphere culture and cellular analyses. Several genes encoding proteins from the mitochondrial respiratory chain complexes were overexpressed in the PR group and mitochondrial metabolic activity in the fetal hypothalamus was altered. The level of the N6-methyladenosine epitranscriptomic mark was reduced in the PR fetuses, and the expression of several genes involved in the writing/erasing/reading of this mark was indeed altered, as well as genes encoding several RNA-binding proteins. Additionally, we observed a higher number of neuronal-committed progenitors at embryonic day 17 (E17) in the PR fetuses. Together, these data strongly suggest a metabolic adaptation to the amino acid shortage, combined with the post-transcriptional control of protein expression, which might reflect alterations in the control of the timing of neuronal progenitor differentiation.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Feto/metabolismo , Hipotálamo/embriologia , Fenômenos Fisiológicos da Nutrição Materna/genética , Mitocôndrias/genética , Animais , Feminino , Desenvolvimento Fetal/genética , Hipotálamo/metabolismo , Gravidez , Ratos
18.
Reprod Sci ; 27(4): 963-976, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32124397

RESUMO

The clinical significance of periconceptional folic acid supplementation (FAS) in the prevention of neonatal neural tube defects (NTDs) has been recognized for decades. Epidemiological data and experimental findings have consistently been indicating an association between folate deficiency in the first trimester of pregnancy and poor fetal development as well as offspring health (i.e., NTDs, isolated orofacial clefts, neurodevelopmental disorders). Moreover, compelling evidence has suggested adverse effects of folate overload during perinatal period on offspring health (i.e., immune diseases, autism, lipid disorders). In addition to several single-nucleotide polymorphisms (SNPs) in genes related to folate one-carbon metabolism (FOCM), folate concentrations in maternal serum/plasma/red blood cells must be considered when counseling FAS. Epigenetic information encoded by 5-methylcytosines (5mC) plays a critical role in fetal development and offspring health. S-adenosylmethionine (SAM), a methyl donor for 5mC, could be derived from FOCM. As such, folic acid plays a double-edged sword role in offspring health via mediating DNA methylation. However, the underlying epigenetic mechanism is still largely unclear. In this review, we summarized the link across DNA methylation, maternal FAS, and offspring health to provide more evidence for clinical guidance in terms of precise FAS dosage and time point. Future studies are, therefore, required to set up the reference intervals of folate concentrations at different trimesters of pregnancy for different populations and to clarify the epigenetic mechanism for specific offspring diseases.


Assuntos
Metilação de DNA/efeitos dos fármacos , Epigênese Genética , Ácido Fólico/administração & dosagem , Fenômenos Fisiológicos da Nutrição Materna/genética , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Animais , Suplementos Nutricionais , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Ácido Fólico/efeitos adversos , Deficiência de Ácido Fólico/genética , Humanos , Fenômenos Fisiológicos da Nutrição Materna/efeitos dos fármacos , Gravidez
19.
Nutrients ; 12(2)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093185

RESUMO

Our objective was to determine how docosahexaenoic acid (DHA) proportions in human milk are modulated by maternal FADS gene variants and dietary intake in Taiwanese women. Inclusion criteria included being healthy, 20-40 y old, having had a full-term baby that they intended to breast feed for at least 1 month, and willingness to participate in this study. Intake of DHA was assessed by food frequency questionnaire and fatty acids were analyzed in human milk samples collected 3-4 weeks postpartum. Based on multiple linear regression of data from 164 mothers that completed this study, there was 0.28% (FA%) reduction in milk DHA in high versus low genetic risk (stratified by whether minor allele numbers were ≥ 3 in rs1535 and rs174448) and 0.45% reduction in low versus high intake (stratified by whether DHA intake reached 200 mg/d). There was a significant gene-diet interaction; mothers with low genetic risk only had high milk DHA proportions with high DHA intake, whereas for mothers with high genetic risk, dietary effects were quite limited. Therefore, for FADS single nucleotide polymorphism in Taiwanese women, increasing DHA intake did not correct low milk DHA proportions in those with a high-risk genotype. Diet only conferred benefits to those with a low-risk genotype. Trial registration: This trial was retrospectively registered (Feb 12, 2019) in ClinicalTrials.gov (No. NCT03842891, https://clinicaltrials.gov/ct2/show/NCT03842891).


Assuntos
Povo Asiático/genética , Ácidos Docosa-Hexaenoicos/análise , Ingestão de Alimentos/genética , Ácidos Graxos Dessaturases/genética , Leite Humano/química , Adulto , Alelos , Aleitamento Materno , Inquéritos sobre Dietas , Feminino , Genótipo , Humanos , Recém-Nascido , Fenômenos Fisiológicos da Nutrição Materna/genética , Mães , Polimorfismo de Nucleotídeo Único/genética , Período Pós-Parto , Gravidez , Taiwan , Adulto Jovem
20.
Nestle Nutr Inst Workshop Ser ; 93: 145-152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31991428

RESUMO

The link between poor maternal nutrition and suboptimal outcomes in offspring is well established, but underlying mechanisms are not well understood. Modifications to the offspring epigenome are a plausible mechanism for the transmission of intergenerational signals that could extend to effects of paternal nutrition mediated by epigenetic modifications in sperm. The epigenome is extensively remodeled in the early embryo. Attention has therefore focused on the periconceptional period as a time when differences in parental nutrition might influence the establishment of epigenetic marks in offspring. So-called "natural experiments" in The Gambia and elsewhere have highlighted loci that may be especially sensitive to periconceptional nutrition, and some are associated with health-related outcomes in later life. There is speculation that some epigenetic signals could be transmitted across multiple generations, although this would require epigenetic marks to evade epigenetic reprogramming events at conception and in primordial germ cells, and evidence for this is lacking in humans. Effects on child development spanning one or more generations could impose an intergenerational "brake" on a child's growth potential, limiting, for example, the rate at which populations can escape from stunting.


Assuntos
Desenvolvimento Infantil , Epigênese Genética/genética , Pré-Escolar , Metilação de DNA , Feminino , Gâmbia , Avós , Humanos , Lactente , Recém-Nascido , Masculino , Fenômenos Fisiológicos da Nutrição Materna/genética , Fenômenos Fisiológicos da Nutrição , Herança Paterna/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...